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Solutions of slow Brinkman flows using the method
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SUMMARY

This paper develops the method of fundamental solutions (MFS) as a meshless numerical method to
obtain solutions of two- and three-dimensional slow Brinkman-extended Darcy’s flows. The solutions of
the steady Brinkman equations are obtained by utilizing the boundary collocation method as well as the
expansion of the fundamental solutions, which are derived by using the Hörmander operator decomposition
technique. All the velocities, their partial derivatives, the pressure, and the stresses corresponding to the
fundamental solutions are addressed explicitly in tensor forms. Two- and three-dimensional Brinkman
problems with Dirchlet and Robin boundary conditions are carried out to validate the proposed numerical
schemes. Then, the method is applied to solve a peanut-shaped problem and a joint flow of Stokes and
Brinkman fluids. In the spirits of MFS, the proposed numerical scheme is free from singularities and
numerical integrations and it also does not require any domain discretization. Copyright q 2007 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The transport phenomena in porous media arise in many diverse fields of science and engineering,
such as civil, mechanical, chemical, and petroleum engineering. A porous medium is defined by
a material consisting of a solid matrix with interconnected voids filled with fluids. The porous
media can be either naturally formed or fabricated. Thus, the analysis of transport phenomena in
porous media is of great importance in science and engineering.

The original works on the porous media dated back to the studies of Darcy [1] in 1856. Thereafter,
the transport phenomena in porous media had been studied extensively over years [2–6]. Most of
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these studies are based on the Brinkman extended Darcy’s model [2]. Tam [7] demonstrated that
a viscous fluid flowing through a cloud of spherical particles could be theoretically reduced to a
problem governed by the Brinkman equation. Lundgren [8] and Howells [9] also found similar
reductions on theoretical grounds for fluids flowing through random arrays of spheres and parallel
circular posts, respectively.

Although analytical treatments have been applied to obtain solutions of Brinkman equation
[10], their usages are usually limited to canonical domains. Numerical methods are thus applied
to obtain solutions for arbitrary domains. In the last few decades, researchers have paid attention
to the meshless numerical methods without employing the concept of element. In this paper, we
consider the application of the method of fundamental solutions (MFS) which is a boundary-type
meshless numerical method. The MFS was first proposed by Kupradze and Aleksidze [11]. Its
mathematical foundations were established by Mathon and Johnston [12] and Bogomolny [13].
Then, the MFS was successfully applied to the elliptic boundary value problems [14], the scattering
and radiation problems [15], the evaluation of eigenvalues [16], and the diffusion problems [17].

The MFS has also been applied to solve problems of fluid flows. Tsai et al. [18] obtained
the solution of the three-dimensional Stokes problems by utilizing the combination of the dual
reciprocity method as well as the MFS based on the Laplace and modified Helmholtz fundamental
solutions. On the other hand, Alves and Silvestre [19] and Tsai et al. [20] applied the MFS based on
the Stokeslet for interior and exterior Stokes flow problems, respectively. In this paper, we extend
the previous studies to the Brinkman equations by using the fundamental solutions of Brinkman
equations. Furthermore, we consider a joint flow of Stokes and Brinkman fluids.

When time-dependent problems are solved by the MFS, they are treated either by the time-
dependent fundamental solutions [17] or by the finite difference or Laplace transform in time [21].
When the unsteady Stokes problems were solved by the former method, the accuracy was sensitive
with respect to the locations of sources [22]. On the other hand, Brinkman equations are deduced
if the finite difference or Laplace transform is carried out to deal with time derivatives of the
unsteady Stokes equations. Thus, the present study can also be viewed as a preliminary work to
solve unsteady Stokes or even Navier–Stokes problems.

Overall, this paper develops the MFS as a meshless numerical method to solve Brinkman
equations. Furthermore, it avoids the problems of singularities by addressing the sources of the
fundamental solutions on a fictitious curve (surface for three dimensional) outside the computational
domain and simply collocates the boundary conditions without integration. The contents of this
paper are organized as following: the governing equations and the corresponding fundamental
solution are revisited in Section 2. Then, the MFS formulations are introduced in Section 3 and the
validation of the present numerical scheme as well as the numerical results for various Brinkman
problems are delineated in Section 4. Finally, the main conclusions of the present study are drawn
in Section 5.

2. GOVERNING EQUATIONS AND THEIR FUNDAMENTAL SOLUTIONS

For a slow Brinkman-extended Darcy’s flow, the mass and momentum conservation equations are
given by [2]:

∇ · u= 0

−∇ p + �∇2u= �

�
u

in � (1)
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where u= (u1, u2, u3) is the velocity, p is the pressure, � is the viscosity, and � is the permeability.
To form a well-posed problem, proper boundary conditions should be imposed:

u= u on �1

t= t on �2
(2)

where u and t are prescribed boundary data, and � = �1+�2 is the boundary of the computational
domain �. In addition, t= (t1, t2, t3) is the traction boundary condition defined by

ti = �i j n j (3)

where n= (n1, n2, n3) is the outward normal vector and �i j is the stress tensor defined by

�i j =−p + �

(
�ui
�x j

+ �u j

�xi

)
(4)

Then, we introduce the fundamental solutions required in the MFS formulations. For two dimen-
sions, Equation (1) can also be rewritten in matrix form as

L̃

⎛
⎜⎝
u1

u2

p

⎞
⎟⎠= 0 (5)

with

L̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�(∇2 − �2) 0 − �
�x

0 �(∇2 − �2) − �
�y

− �
�x

− �
�y

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

where 1/�= �2.
The fundamental solutions of Equation (5) are defined by

L̃

⎛
⎜⎜⎝
u∗
11 u∗

12 0

u∗
21 u∗

22 0

p∗
1 p∗

2 0

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

−�(x − s) 0 0

0 −�(x − s) 0

0 0 0

⎞
⎟⎟⎠ (7)

where x= (x1, x2), s= (s1, s2), and �( ) is the Dirac delta function. Equation (7) can be solved by
using the Hörmander operator decomposition technique [23]. First of all, we introduce the adjoint
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operator of L̃ as

L̃adj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− �2

�y2
�2

�x�y
�

�
�x

(∇2 − �2)

�2

�x�y
− �2

�x2
�

�
�y

(∇2 − �2)

�
�
�x

(∇2 − �2) �
�
�y

(∇2 − �2) �2(∇2 − �2)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

Then, we have

L̃ L̃adj =− Ĩ�∇2(∇2 − �2) (9)

in which Ĩ is the identity matrix. In the spirit of the Hörmander operator decomposition technique,
we assume ⎛

⎜⎝
u∗
11 u∗

12 0

u∗
21 u∗

22 0

p∗
1 p∗

2 0

⎞
⎟⎠ = −1

�
L̃adj

⎛
⎜⎝
G 0 0

0 G 0

0 0 0

⎞
⎟⎠ (10)

By substituting Equation (10) into Equation (7) and using Equation (9), we have

∇2(∇2 − �2)G = −�(x − s) (11)

The solution of Equation (11) can be found in the literature [24] as follows:

G = 1

2��2
(K0(�|x − s|) + log(|x − s|)) (12)

where Kn( ) second kind modified Bessel function of order n. It should be noticed that Equation
(12) can be selected up to homogeneous solutions. Consequently, we have the fundamental solutions
of two-dimensional Brinkman equation by utilizing Equation (10) as follows:

u∗
ik = �ik(−1 + �r K1(�r) + �2r2K0(�r))

2��2�r2
+ didk[2 − �2r2K2(�r)]

2��2�r4
(13a)

p∗
k = dk

2�r2
(13b)

where r is the Euclidean distance between x and s, and di = xi − si . Then, the corresponding stress
fundamental solutions can also be obtained by using the definition of Equation (4) as follows:

�∗
i jk = �i j dk[4 − �2r2 − 2�2r2K2(�r)]

2��2r4

+ (�ikd j+� jkdi )[4−2�2r2K2(�r)−�3r3K1(�r)]
2��2r4

+did jdk[−8+�3r3K3(�r)]
��2r6

(14)
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where the following partial derivatives are supplied:

�u∗
ik

�x j
= �ikd j [2 − �2r2K2(�r) − �3r3K1(�r)]

2��2�r4

+ (�i j dk + � jkdi )[2 − �2r2K2(�r)]
2��2�r4

+ did jdk[−8 + �3r3K3(�r)]
2��2�r6

(15)

In Equations (13)–(15), i, j, k = 1, 2.
Similarly, we have the following results for three dimensions:

u∗
ik = �ik[−1 + (1 + �r + �2r2)e−�r ]

4��2�r3
+ didk[3 − (3 + 3�r + �2r2)e−�r ]

4��2�r5
(16a)

p∗
k = dk

4�r3
(16b)

which are governed by
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�(∇2 − �2) 0 0 − �
�x

0 �(∇2 − �2) 0 − �
�y

0 0 �(∇2 − �2) − �
�z

− �
�x

− �
�y

− �
�z

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

u∗
11 u∗

12 u∗
13 0

u∗
21 u∗

22 u∗
23 0

u∗
31 u∗

32 u∗
33 0

p∗
1 p∗

2 p∗
3 0

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

−�(x − s) 0 0 0

0 −�(x − s) 0 0

0 0 −�(x − s) 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ (17)

Also, we have the partial derivatives

�u∗
ik

�x j
= �ikd j [3 − (3 + 3�r + 2�2r2 + �3r3)e−�r ]

4��2�r5

+ (�i j dk + � jkdi )[3 − (3 + 3�r + �2r2)e−�r ]
4��2�r5

+ did jdk[−15 + (15 + 15�r + 6�2r2 + �3r3)e−�r ]
4��2�r7

(18)
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and stresses

�∗
i jk = �i j dk[6 − �2r2 − (6 + 6�r + 2�2r2)e−�r ]

4��2r5

+ (�ikd j + � jkdi )[6 − (6 + 6�r + 3�2r2 + �3r3)e−�r ]
4��2r5

+ did jdk[−15 + (15 + 15�r + 6�2r2 + �3r3)e−�r ]
2��2r7

(19)

In Equations (16)–(19), i, j, k = 1, 2, 3.

3. MFS FORMULATIONS

To demonstrate the MFS formulations, we take the three-dimensional cases as examples. By using
the general theory of MFS [12, 13], the solution of Equations (1) and (2) can be represented
arbitrarily well by

ui (x; �11, . . . , �
N
1 , �12, . . . , �

N
2 , �13, . . . , �

N
3 , s1, . . . , sN ) ∼=

3∑
k=1

N∑
j=1

� j
k u

∗
ik(x, s j ) (20)

where u∗
ik(x, s j ) is the fundamental solution given in Equation (16). Then, the corresponding

traction can be obtained by using Equation (4) as follows:

ti (x; �11, . . . , �
N
1 , �12, . . . , �

N
2 , �13, . . . , �

N
3 , s1, . . . , sN ) ∼=

3∑
k=1

N∑
j=1

� j
k t

∗
ik(x, s j ) (21)

with

t∗ik =
3∑
j=1

�∗
i jkn j (22)

where �∗
i jk is given in Equation (19).

It is easily verified that Equation (20) satisfies the governing equations of Equation (1) ana-
lytically. Mathematically, Equation (20) is arbitrarily close to the solution if we have sufficient
large number of source points. Numerically, boundary conditions in Equation (2) are simply col-
located to determine the unknowns coordinates of source points s j = (s j1, s j2, s j3) as well as the

corresponding unknown intensities a j = (� j
1, �

j
2, �

j
3). Traditionally, the N source points s j can be

treated either as unknown or a priori known. In which the first case results in a nonlinear opti-
mization with 6N unknowns, a j and s j . The solutions obtained by this way are highly accurate
but procedure is more cumbersome [14]. On the other hand, if the source points are considered
as a priori known, the boundary conditions are simply collocated at N = N1 + N2 boundary field
points xl . It results in a linear equation system as follows:

ui (xl) =
3∑

k=1

N∑
j=1

� j
k u

∗
ik(xl , s j ) for l = 1, 2, . . . , N1 (23a)
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Ω
Γ

s1
s2 s3

si

x1
x3

x2

xi

c

si = xi +b(xi − c)

Figure 1. Schematic diagram of the source and field points.

t i (xl) =
3∑

k=1

N∑
j=1

� j
k t

∗
ik(xl , s j ) for l = N1 + 1, N1 + 2, . . . , N1 + N2 (23b)

In Equation (23), there are 3N equations with 3N unknowns, a j , and thus can be solved. In
this paper, we typically locate the boundary field points uniformly and place the source points
stipulated out by a parameter of source location, b, as depicted in Figure 1. More details on the
discussion of locating sources can be found in [25].

The MFS formulations for two dimensions are also similar and thus neglected here.

4. NUMERICAL RESULTS

In order to validate the proposed numerical method, the following four numerical experiments are
considered: two-dimensional Dirchlet problem, two-dimensional Robin problem, three-dimensional
Dirchlet problem, and three-dimensional Robin problem. The results are compared with their
analytical values and the accuracies of the solutions obtained by the MFS are studied. Then, we
applied the scheme to solve a peanut-shaped problem and a joint flow of Stokes and Brinkman
fluids. In these examples, the root-mean-square error of the MFS is defined as√√√√∑N

j=1
∑L

i=1 (ui,numerical(x j ) − ui,exact(x j ))2

L × N
(24)

where ui,numerical(x j ) is the numerical solutions obtained by the MFS (Equation (20)) at x j ,
ui,exact(x j ) is the corresponding exact solution, L is the dimensionalities and N is the number of
total nodes considered.

4.1. Two-dimensional Dirichlet problem

We consider the solutions of Equations (5) and (6) in a rectangle of 2× 2 with center at (0, 0)
subjected to Dirchlet boundary conditions. The exact solution of the problem is

u1 = cos x1 sinh x2

u2 = sin x1 cosh x2

p = −�2� sin x1 sinh x2

(25)
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Figure 2. The errors of two-dimensional Dirchlet problem.

Furthermore, �= 1 and � = 3 are selected typically. The exact solution of Equation (25) is obtained
by assuming harmonic in x1.

Figure 2 depicts the root-mean-square errors for different numbers of ranks and parameters of
source location, in which the rank is associated to the matrix resulted from Equation (23). For
two dimensions, the rank is two times the number of collocation nodes. From these results, it is
observed that the MFS can obtain excellent solutions almost up to machine errors and generally
farther sources result in better accuracy as predicted in theoretical articles [12, 13]. In addition, it
is found that the errors are truncated if the parameters of source location exceed the capacity of
equation solver. These are similar to the general works in [25].

4.2. Two-dimensional Robin problem

Then, we consider the rectangle subjected to the Neumann boundary condition at x1 = 1 and
Dirichlet boundary conditions elsewhere. The exact solution is the same as the previous case.
Similarly, Figure 3 demonstrates the root-mean-square errors for different numbers of ranks and
parameters of source location. Excellent results are also observed and they indicate that the MFS
can easily be extended to Robin problems.

4.3. Three-dimensional Dirichlet problem

To validate the applicability of the proposed numerical method to three dimensions, we consider
a cube of 2× 2× 2 with center at (0, 0, 0) subjected to Dirichlet boundary conditions. The exact
solution of the problem is

u1 = cos x1 sinh
x2 + x3√

2

u2 = 1√
2
sin x1 cosh

x2 + x3√
2

u3 = 1√
2
sin x1 cosh

x2 + x3√
2

p = −�2� sin x1 sinh
x2 + x3√

2

(26)
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Figure 3. The errors of two-dimensional Robin problem.

Figure 4. The errors of three-dimensional Dirchlet problem.

In the above, � = 1 and � = 1 are assumed. The exact solution of Equation (26) is obtained
by a rotation of Equation (25). The root-mean-square errors for different numbers of ranks and
parameters of source location are described in Figure 4. For three dimensions, the rank is three
times the number of collocation nodes. It is also observed from the figure that the solutions obtained
by the MFS are in excellent agreements with the exact solutions.

4.4. Three-dimensional Robin problem

Then, we consider the cube subjected to the Neumann boundary condition at x1 = 1 and Dirichlet
boundary conditions elsewhere. The exact solution is the same as case III. Also, Figure 5 demon-
strates the root-mean-square errors for this case. The excellent results indicate that the MFS also
perform well for this three-dimensional Robin problem.
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Figure 5. The errors of three-dimensional Robin problem.

Figure 6. The errors of peanut-shaped problem.

4.5. Peanut-shaped problem

In order to demonstrate the flexibility of the MFS for irregular domains, two-dimensional peanut-
shaped domain (Figure 1), defined by

r(�) =
√
cos 2� +

√
1.1 − sin2 2�, 0���2� (27)

subjected to Dirichlet boundary condition is considered. In Equation (27), (r, �) is the polar
coordinate. The exact solution is set up by Equation (25). Figure 6 depicts the root-mean-square
errors and excellent accuracies are also observed.
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O x1

x2

H

H Brinkman regime

Stokes regime

1u1

Figure 7. Geometric configuration of the application.

4.6. Application

When the MFS is applied to solve multi-phase problems or degenerate boundary value problems,
the domain decomposition method (DDM) should be supplied [26]. As a final example, we consider
a two-phase flow of Stokes and Brinkman fluids as depicted in Figure 7. The governing equations
of the Stokes flows are

∇ · u= 0

−∇ p + �∇2u= 0
in � (28)

In addition, the MFS formulation for Stokes flows can be found in the literature [19, 20]. In
these two articles, the traction kernels are not given explicitly, we supply them in tensor forms
in Appendix. To form a single matrix, the MFS formulations for Stokes and Brinkman flows
are collocated on the boundaries of x2>0 and x2<0, respectively. On the interface x2 = 0, the
connection conditions of continuous traction and velocity are imposed. Details of the combination
of MFS and DDM can be found in the literature [26].

The exact solutions of the problem are

u1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tanh(�H) + �x2
tanh(�H) + �H

, x2�0

tanh(�H) cosh(�x2) + sinh(�x2)

tanh(�H) + �H
, x2�0

(29a)

u2 = 0 (29b)

p= constant (29c)

In our numerical experiments, � = 3, H = 1 and � = 1 in both regimes are set up. The root-mean-
square errors are stated in Table I, which also perform well.
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Table I. The errors of the joint flow problem.

Rank 240 288 336 384
RMS 1.70E−09 7.43E−10 6.41E−10 4.33E−09

5. CONCLUSIONS

A numerical scheme of the MFS is developed for two- and three-dimensional slow Brinkman
flows. The closed-form fundamental solutions, obtained by the Hörmander operator decomposi-
tion technique, their partial derivatives, the pressure, and the corresponding traction kernels are
given explicitly in tensor forms. To validate the proposed numerical method, four numerical exper-
iments of two and three dimensions with Dirichlet and Robin boundary conditions are carried out.
Overall, the MFS can obtain excellent solutions almost up to machine errors. Then, the method
is applied to a problem of peanut-shaped domain in two dimensions to demonstrate the flexibility
of the proposed numerical method to treat irregular domains. Also, a joint flow of Stokes and
Brinkman fluids is considered as an application. From these results, it is convinced that the MFS
is a suitable meshless numerical method to solve slow Brinkman flows without integrations and
singularities. Furthermore, these results also hint the possibility of further works on solving un-
steady Stokes or even Navier–Stokes problems, if the dual reciprocity methods can be properly
jointed.

APPENDIX

The two-dimensional fundamental solutions of Stokes flow, governed by Equation (7) with � = 0,
are

u∗
ik =−�ik(2 ln r + 1)

8��
+ didk

4��r2
(A1)

�u∗
ik

�x j
= − �ikd j

4��r2
+ (�i j dk + � jkdi )

4��r2
− did jdk

2��r4
(A2)

p∗
k = dk

2�r2
(A3)

�∗
i jk = −did jdk

�r4
(A4)

It may be noticed that Equation (A1) is different from those in the literature [19, 20] since
the fundamental solutions can be chosen up are to homogeneous solutions. Similarly, the three-
dimensional fundamental solutions of Stokes flow, governed by Equation (17) with � = 0, are

u∗
ik = �ik

8��r
+ didk

8��r3
(A5)

�u∗
ik

�x j
=− �ikd j

8��r3
+ (�i j dk + � jkdi )

8��r3
− 3did jdk

8��r5
(A6)
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p∗
k = dk

4�r3
(A7)

�∗
i jk = −3did jdk

4�r5
(A8)

In Equations (A1)–(A4), i, j, k = 1, 2 and i, j, k = 1, 2, 3 in Equations (A5)–(A8).
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